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FOREWORD

This work was performed at the Supersonic Wind-Tunnel Laboratory of

Montana State University by A. Demetriades, Professor Mechanical
Engineering, under Grant AFOSR 80-0267 with the Air Force Office of

Scientific Research of Washington D.C. It is part of a series of

theoretical and experimental studies of the high-speed mixing character-
istics of laminar, transitional, and turbulent shear flows.

In a practical sense, this study furnishes theoretical predictions

of wake flows needed to optimize gas-dynamic and chemical laser design.
As such, it was most recently motivated by work done by the author for

the Air Force Weapons Laboratory and TETRA Corporation of Albuquerque,
New Mexico. Specifically, the present problem was first discussed in

TETRA report TR-81-005 by the present author, in which the solutions for
the velocity were first shown. In the present report, the subject is

continued by presenting the solutions for the thermodynamic variables as
well. For the sake of completeness, the earlier velocity-field solutions
are also briefly discussed.

A second, related motivation arises from the need to prepare theoretical
predictions for certain experiments planned in the laboratory's supersonic
tunnel for the AFOSR program. These experiments feature the basic fluid

mechanics of asymmetric wakes and shear layers at supersonic speeds, for

which predictive formulas are presented here. Clearly, if the latter are

verified by the forthcoming experiments, the present analysis can become

an important tool in laser cavity design.

Encouragement of, and interest in this work, has therefore come
from diverse sources whick, the author wishes to acknowledge here. The

assistance and cooperation of Drs. W. Moeny of TETRA and P. J. Ortwerth and
L. Wilson of AFWL, as well as of Capt. M. Francis of AFOSR is noted with
gratitude.

AIR FO'e~CT OFT1•' q' •r¢T•5'•TPT( P•'"- (AFSC)

MATTHrEW J.
Chief, Technlcal Inf ormation Division
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1. Introduction

The problem addressed in this report is the steady, laminar two-
dimensional wake formed by a homogeneous fluid streaming past an infinitely
thin plate. As enunciated, this problem was first solved for incompressible

flow Ly Tollmien (Reference 1) and Goldstein (Reference 2). These solutions

take a simple self-similar form far away from the trailing edge (T.E.), which
has also been used as a convenient starting point in the discussion of
compressible wakes (Reference 3). In the region immediately past the
T.E. the classic solutions of References 1 and 2, however, have been

arrived at in the form of matching expansions, which produces tabulated
numerical results rather than a single analytic expression. It would

clearly be desireable to have closed-form analytic solutions instead, in

a way improving the perception of the wake behavior.

This report sets out to accomplish two objectives, the first of
which is the derivation of formulas for the wake properties which are

valid from the T.E. to an infinite distance downstream. This is done
at any stream Mach and Reynolds numbers and any T.E. surface temperature
relative to the stagnation temperature, by restricting the analysis to
isobaric flow, Prandtl number one and constant Chapman-Rubesin factor.

These restrictions are certainly not severe enough to obscure the dynamics,
C and can be removed once the basic problem is understood.

The second objective is to extend the solutions to a wake with
initial asymmetry. In reallistic terms, such an asymmetry is more likely
to occur, say, when two adjacent nozzles discharge parallel streams, as
shown on Figure 1, than in the classic flat-plate wake. In fact, the
motivation for this work arose from questions of gas-dynamic and chemical

laser design optimization, which deal with geometries such as that of

Figure 1. Since the two streams are identical, the asymmetry can arise
only due to surface conditions at the T.E., such as different momentum
thicknesses or different wall temperatures on either side of the T.E.
The latter is rather unreallistic, however, so long as we consider the
partition near the T.E as "infinitely thin". Thus, we consider only the
asymmetry due to momentum-thickness differences in the two merging

boundary layers.
1
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It must be 'ioted that the method of solution for both the symmetric
and asymmetric cases rests on a linearization assumption. However, since

the initial and asymptotic conditions at large distances are recovered,

the penalty for this assumption is nowhere evident.

2. Statement of the Problem and Definition of Terms
I

The solution of the wake problem given herein is subject to the

following restrictions:

1) The flow is everywhere parallel and two-dimensional.
2) The pressure is everywhere constant.

3) The fluid is chemically homogeneous and non-reacting.

4) No volume effects (e.g. volume heat addition or body force) are

allowed.

5) The flow is laminar and steady.

A lesser assumption is that the Prandtl number is unity everywhere,

chosen consistently with the use of the Crocco relation for the temperature
distribution in the boundary layer at the trailing edge (T.E.).

Within these restrictions, the solutions are provided for:
I

(a) Any stream Mach number Me"
(b) Any Reynolds number Re.

(c) Any wall-to-stagnation temperature ratio Tw/To (Tw is the T.E.
surface temperature).

(d) Any asymmetry ratio 9i/62 = P.

The solutions are thus provided as functions of x, y, M, Tw/To, P

and Re, the latter implicitly through the definition of the non-dimensional
variables. Wh. -i = 02 or P = 1, the solution is termed symmetric, whereas
the term "completely asymmetric" denotes the solution for P = 0 (or P = 2).

2
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The terms defect, deficit, and decrement are used to denote characteris-

tic groupings of the flow variables at a certain x from the T.E. For example,

for the temperature:

T(O) -T or -T : deficit
e c e

T(O) - Te or Tc " Te : defect

Te Te

T(O) T T -Te or c e : decrement
T w -Te Tw - Te

The subscript "c" (for "center") is used to denote the extremum of the

temperature profile at a certain x for the general case of wake asymmetry
(P ý 1). When P = 1, Tc coincides with T(O), the latter symbolism meaning
the temperature at y = 0 which is also the wake "center" (plane of symmetry)

when P = 1.

The term "profile" is reserved for specific non-dimensional groupings

such as

ue - u or ue - u

ue - u(O) ue - uc

while the term "variation" is often used to represent groupings such as

1 - u/ue.

3. Solution of the Problem for Arbritrary Asymmetry

3.1 The Method of Solution

The present objective is to find the fluid properties (velocity,

temperature, density, etc.) in the wake as a function of the coordinates,
the flow parameters, and the asymmetry ratio P. To this end, we utilize

the solution reported by Gold (Reference 4 ) for a wake beginning at the

j )T.E. with profiles

Ue

3



T0c~l*)
(2)

of the velocity and temperature. Gold employed the Oseen approximation

to the boundary-layer equations to find the solutions as follows:

where uo, ho: initial velocity and temperature profiles, and

(5)

L (6)

o J~J (7)

L = characteristic length, to be derived.

I r
R eI r-e_ _ ( 8 )

The Oseen approximation is a linearization restricted to:

Lk (10)

Note that dimensional properties above, are usuall) denoted by an
asterisk (*) or a subscript "e".

4
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Three additional remarks must be made as regards the above solution.
First, Gold assumed the Chapman-Rubesin factor t.p as constant; second, the

coordinate x appearing in eq. (5) was written by Gold as x,-, to account

for non-unity Prandtl number. Here we set C = 1 to be consistent with our
later use of the Crocco relation. This difference can be easily accounted

for in numerical calculations, and is in anyway a rather unimportant feature
of this analysis.

Third, Gold calculated that the solutions (3) and (4) are rather

insensitive to the initial profiles U and 5 especially far from the
0O 0origin, and that the governing factor is the initial momentum thickness

rather than the initial profile shape. This should be kept in mind in

the next section.

3.2 The Initial Profiles

If the shed boundary layers have momentum thicknesses .1 and 02
respectively, then the initial velocity profile at the T.E. for purposes of

calculating the wake development is:

For L -k-- U (12)

< o e (13)

with kI, k2 evaluated from the linearized version

19 UO (14)

of the momentum integral

o Pe 0e (15

ofe%

where

(16)

0

J, V - - L : " :: L . :• . • :,• -•' ' • " .. . . . . . " - . .. " • " llL '• - - • •-= •j g•,,,•,,, -. - -• •. . . .... . .... . .

.:.S ; : . .- i .L : . - • i ._ . '•• " - - : m •.- , -. . . . .. .



Use of (14) instead of (15) as a boundary condition is consistent with
Gold's theory which is used past the T.E. and it implies that

w 1-u(o) < < 1 (17),
Ue

Using (12), (13) in (14) gives

kI= e19 k 2 = 6 2 (18)

so that the initial velocity profile reads

~-~'~ - ~(19)

<0 LA.() Pe (20)

with (21)

(22)

The choice for an exponential initial velocity profile is arbritrary,

although it has obvious qualitative similarities to a "typical" profile as

Figure 2 shows; clearly, too, it is algebraically simple and should

therefore expedite the solution. The earlier comments should also be

recalled, regarding the insignificance of the initial profile details to

the wake development. It is more important to note that the chosen

profiles (19) and (20) cannot possibly fulfill the condition (10). We

shall see from the results that the solution is analytic for all x > 0,

however, and that a very reasonable continuous solution is obtained.

The parameter P, called the asymmetry ratio, is a key parameter in

this analysis because it shows the initial "skewness' of the wake.

Because of the interchangeability of 01 and 0 2 the range 0 < P < 1 covers
all possible ratios of 01 and02

6



For consistency, the definition of y must be carried from the T.E.

to all downstream positions. This allows us to define the length scale
L by combining (6) and (21):

R -e •-(23)L '9,

6 Res >. fo (24)

so that the non-dimensional variables x and y in the proposed solution

(3) become, according to (23) and (24):

(25)

(26)

We perceive that the choice of L can be further improved, to avoid

awkward mathematics such as for P = 0 (01 = 0). Besides, it should be

clear that the wake should be controlled by its total drag, i.e. e1 and

e2, and by P which shows how this drag wa3 initially distributed between
streams 1 and 2. We will make this improvement on L later, since it is

more convenient to first present the solution in terms of the coordinates

as defined by (25) and (26).

The initial temperature profiles were found with the aid of the Crocco

relation:

+j I+2. T'e L4e( (27)

Using the definitions

717 e- -e (29)

"ClM (30)

7



as well as equations (19) and (20) we obtain

'¾> : -.I- C EP_ (31)

< (32)

The Crocco relation (21) is valid when the Prardtl number C= 1. For

this reason, as already mentioned, consistency requires that the wake
solutions are founa for c = 1 also, as we intend to do.

Typical initial temperature profiles according to (31) and (32), are

illustrated on Figure 3, and are useful in stressing two points. First,

the examples of Figure 3 were chosen to illustrate the possibility that

for certain Me and Tw/To we can obtain Z," > 1, which violates the assump-
tion (11). This violation is more serious than in the cese of the velocity

where I = 1 at most; thus the temperature results of the present analysis
0

should be viewed with caution near x = 0. Second, the distribution of

temperature is plotted in two different ways. the "profile" function being

shown o,, L• right of the Figure. The algebraic form of the profile often

creates unusual curves, a point to be kept in mind during the presentation

of results.

3.3 Solutions g

If the initial profiles (19), (20), (31) and (32) are substituted

in eq. (30) and (4), simple, closed-form solutions can be immediately

obtained for u and

U.

As expected, U does not explicitly depend on Me and TW/7 0 , although it

does so implicitly through the transformed variable $.

t 8
Ir
*



The solutions (33) and (34) have been successfully subjected to the

following tests:

(a) At x = 0, the initial profiles (19) etc. are recovered.

(b) At y = t -3 , " m,.,O as expected.

(c) At x =me, the familiar Tollmien-Goldstein asymptotic forms are

recovered as expected, independent of P. (References 1 and 2)

The Tollmien-Goldstein asymptotes will be presented later.

(d) If 81 and 82 are interchanged relative to the positive sense of

y, then the asymmetric solutions (pfl) also interchange, as they

should.

Solutions (33) and (34) are sufficient to determine the entire flow

field since the pressure is constant; thus the density, Mach number, etc.

can be determined directly.

Before anplying the solutions to special cases, it is here appropriate

to change the independent variables into a more meaningful form. The

total momentum thickness of the wake is

SE), +(35)

:- •and it appears suitable to use 89 in place of e 1 in the definitions of x

and y (see (25) and (26)). The new variables therefore, are:

49 R)E1' (36)

(37)

The connection between x, y, and x', y' can be found using (35):

(38)

and
(39)

9
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The solutions (33) and (34) thus become:

an r c,÷' 4. i' )

ePi ((PP+½~. 0 +x

(40)

and i,,-,I+

It should be parenthetically noted that the variable i'/2 , Is insensitive

to the choice of the normalizing length, as can be seen by inspection of

eqs. (36) and (37).

4. The Symmetric Wake

As mentioned in the Introduction, a complete analytic solution from the

T.E. downstream has not yet been reported for the symmetric two-dimensional

wake, regardless of M or Tw/T 0 . Such a solution can be obtained directly

from (40) and (41) by setting P = 1. Then,
S(42)

(-L'- '- ' - L')+e _=W 1_ )'

+a(r•- '(-.t,'4-• (4 r v (1,•. • (4-16 (43)

These solutions are naturally symmetric in y'.

In the symmetric case, the wake center occurs at y' 0, (i.e. the plane

of symmetry) so that if the wake defect is defined as
U~e- W~o) (A -uc

WN • ---------- = W (xI) (44)

and the velocity profile as usual by

LA.A (45)LAP -u(Ao)

10



then W L (46)

It can be easily shown from (42) that the defect is

e4)( 2%/.[• r (47)

and that W(xW = 0; P = 1) * 1 as expected. At very large X', this defect

becomes

W(e•v-,"" (48)

which is well-known of the Tollmlen (Ref. 1 ) and Goldstein (Ref. 2 ) and which

has since been discussed )y numerous authors (Ref. 3, 4).

The velocity proi ile begins, at x' - 0, with the double-cusp shape given

by (19) and (20) and P - 1. The discontinuity at y' - 0 disappears just as
soon as the fluid leaves the T.E.; for all 1 > 0 the U, found by combining

ý42), (46), and (47), is continuous and analytic in y'. At large x' it

can be stiown from (45) that ,'t

(49)

This simple result has been long known as the asymptotic form of the

profile, which depends on the siritlarity variable

Fj

z (50)

The temperature distribution at the T.E. as given by (31) and (32) is

of course generdlly discontinuous at y = y' = 0. Just like the velocity,

this distribution develops a "rounded top" and is everywhere analytic
im.ndiately past the T.E. according to (43). On the plane of symmetry

y 0 0, the temperature defect )a T(0 M KP=_ 5 e
-~ ~edo S ,Me ) - :Fs

44 1e X. (51)
Se (' z. rx(') +- C e (xI - 6&4 ri)i')(1

At the trailing edge (x' 0) the initial defect is, Tw

= e.- ~(52)
! 11



as also indicated by (31) and (32). Far from the T.E. on the other hand,

00 7 ) a & ~rx, i(53)

Combining with (47) we note that at large x' the ratio of the temperature

to the velocity defects is a constant dependent on Me and Tw/To only:

S(54)

Here the first term on the r.h.s. indicates the compressibility effect on

wake temperature, while the second term indicates the effect of the surface

temperature only. There is, of course, a Prandtl number effect which is

ignored here as per earlier comments; if the Prandtl number V was included,

then the entire r.h.s. of (54) would be multiplied by r".

In addition to the temperature defect as defined in (51), we can

consider the temperature decrement
7 T(o) -Te ,

TW-Te To (55)

which is always unity at the T.E. as opposed to the defect which can be

larger than unity at x' = 0. The decrement, which is simply related to t

via the ratio Tw/To, is useful when the latter is different from unity.

The temperature profile
T-Te
T =T(01-T (56)

is equal to the ratio A/t and can be thus found from (43) and (51). At

the T.E., the profile is given for P = 1 by the initial conditions (31) and
(32); at large x', on the other hand, the profile asymptotic form is again

-, _IL/4•;, _p -1.

T ('• --e=e LA• (;K' W)(7

which is again a consequence of 6= 1. Parenthetically note that, in general,

O - (58)

12



The fact that the asymptotic velocity and temperature profiles (49) and

(57) agree with the long-known results of Tollmien and others is an important

cross-check of the present analysis.

Other flow variables, such as the density, total temperature and

Mach number, can be obtained In the above manner quite directly. For

the sake of completeness, these variables will be given below.

Using its customary definition, the density defect is

S- ---- = ---- (9
(59)fe +

with t given by (51). Similarly, the density decrement is

-P B+ (60)

The density profile, is

T -(61)

An inspection of these formulas for the density reveals once again that

the density "lags" the fluid temperature in the attainment of similarity at

large x'.

The local Mach number, M, in the wake is given by

I-LAW
m iJ e - (62)

and on the plane of symmetry (t=T= i

M(o) = me -F (63)

Finally, the total temperature defect .

;H = -- 1 -+0-2 m(a)
_ -Ir=.+

_ = (64)

while the total temperature decrement isT0OM) -Toe

H Tw - To e Tw (65)
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and the corresponding profile is

T - • . C 1 + ' .
*-O.2.MI. -- (66)

Note that in the last few formulas, above, dealing with the local total

temperature, the symbol for the latter is T0 . The quantity Toe is tthagven

total temperature of the stream, which in earlier sections was denoted by
T.
0,

Sample computations and plots for the symmetric wake will be presented

in Section 6.

5. The Completely Asymmetric Wake

Early computations made in this work with eqs. (40) and (41)

showed that considerable departures from the symmetric wake case given

above, occur only for extreme values of the asymmetry ratio P, that is for

e1 > > 2 or e 1 < < 8 . It therefore seems reasonable to limit the analysis

of wake asymmetry to the extreme case 01 - 0 (P - 0) or 62 = 0 (P = -o).
These two extreme cases are of course identical since one can be obtained

from the other by mirror reflection of its flow field about the y' = 0

plane. We shall therefore discuss only the P - 0 case, which means that

one of the two merging boundary layers is vanishingly small relative to 0

the other. We call this the "completely asymmetric wake". (Of course,

the general solutions (40) etc. can be used for arbritrary asymmetry).

For P = 0, the initial profiles at the T.E. are:

0 -w = o , (67)

S< 0 LA 0• = 
(68)

(69)

i)_
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BeOo + e ce - e(70)

It is both necessary and intuitively possible, here, to preview the
development of this asymmetric wake beyond the trail ,ng edge. As x'

increases, the above initial profiles will tend to "rouna off", but the
"14center of gravity" of the profile initially lies in the y" < 0 half space.

It is therefore likely that the profile maximum (actual velocity minimum)
will lie iny' < 0 and not y' - 0 as was the case of wake symmetry. This
maximum will be referred to as the "wake center", and Its path (the
"deflection") away from y' - 0 is of some interest. For ..'ample, we can
intuitively predict that the wake symmetrizes at large x', but not whether

the center will return to the y' = 0 plaeoe. The subscript "c" for "center"

will in anyway assume the role the symbol (0) had for the symmetric case

(see Section 2 also).

The solutions for the completely asymmetric wake can be directly

obtained from (40) and (41) in the limit P - 0:

r<x 2

7 I"YW * J B + e P- (72)
(

These equations exhibit the proper limiting behavior; for example,

in the limit x' - 0, eq. (71) reduces to (67) and (68), while in the limit
x" a C, it reduces to (48). It is equally easy to show that equations (71)
and (72) are asymmetric relative to y', and that at yo = 0 the 7 obtained from

(71), that is
I

1A '• =0 I O=O )• = -IL(3

does not represent the apex of the profile as it did in the symmetric

case (in References 5 and 6, eq. (73) was called the "pseudodefect").
In the present case, the velocity defect is defined as*

-- -a= W ( Y) 0 • -0) (4
(74)
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where u~ is the minimum velocity at any x', herein also called the "center"

velocity. Then the velocity profile is

LA- = -(75)

The center velocity u as well as the position y' (the "center position")c cu
at which it occurs cannot, unfortunately, be derived in closed form. It
will therefore be discussed in connection with the computations of Section 7.

The discussion of the asymmetric temperature field follows quite closely

the above discussion for the velocity. The definition of the temperature
defect, decrement, profile, etc. follows the rule that the symbol (0) used

for' the symmetric wake (eqs. (45), (56), etc.) -is now changed to a subscript
c. Note, however, that the apex of the temperature profile is again
impossibile tc derive analytically in closed form. We therefore have no
I'a priori" evidence that the wake center found from the temperature profile

coincides with the wake center y'cu discussed earlier for the velocity
profile. This point will be clarified in the computations presented

in Section 7.

The remaining properties of the completely asynmmetric wake such as

the density can also be presented in the form of defects, profiles, etc.

defined as for the symmetric wake but with subscript "c" in place of the2

symbol (0). Results will be shown below.

6. Computations and Graphic Results for the Symmetric Wake

The formulas derived in-Section -for the symmetric wake (P = 1) have

been utilized to present graphically the behavior of the fluid properties
in such a wake from the T.E. (x' = 0) to far distances downstream. These,

which are shown on Figures 4 through 16 and which will be discussed
briefly in this Section, were obtained by numerical computations with the

programs shown in the Appendices.

The chief interest here lies in the way the flow adjusts from a
discontinuous profile at the T.E. to a continuous, analytic profile

immediately past the T.E. We are also interested in the speed with

16



which the asymptotic solutions (48), (49), etc. are attained. We are no
less interested in the effect of stream Mach number M e and of the temperature

ratio T w/To on these adjustments. In this respect, it should be recalled

that the fluid velocity is, in the compressible transformation of eq. (16),

unaffected by M e or T w/To, but that the thermodynamic variables are
strongly affected by these parameters.

4

It is well to keep a physical perspective of the distances involved

downstream of the T.E., and in this sense the kinematic boundary layer

thickness 3 is a more meaningful length measure. For example, suppose

we are interested in the flow in a gas-dynamic laser cavity 10 cm.

downstream of the nozzle array. Suppose, further, that the nozzle exit

Mach number is high-supersonic with a laminar S=0.5 mmn. In this case,

the ratio 8/e is of order 20, while Re~ can be taken to be 400 (i.e.

near the upper limit for laminar flow). Then, from eq. (36):

X XSA* - =i. 02.. (76)
6 e 4e~ Re 4 f0 2 _s 4 0 0

In this example we see, therefore, that the range x' < 1 is of major
practical interest.

Figures 4 and 5 show the velocity defect according to eq. (47). The

experimental points on Figure 5 will be discussed later, but the comparison

with other theories is in order at this point. Specifically, the good

agreement with Goldstein's theory (Ref. 2 ) should be noted, as well as
the difference from the "asymptotic solution", i.e. eq. (48). The latter

seems to be adequate in giving W(x') beyond x' = 1, but expectedly fails

to do so at x' < 1. Figure 4 demonstrates, by the proximity of the solid

to the dashed curves that for very short distances past the T.E. the profiles

are still almost identical with the initial profiles Uo T0i marked "theory".

(the solid curve for U~ has a rounded apex not visible on this graph). The

evolution of the velocity profile U~ is shown on Figure 6. The use of

two different abscissas in this Figure is necessary to show how the profile

approaches the similarity solution (49), occurring past xý 1 as noted.
t
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There are infinite combinations possible of M eand T /To which can
be used to examine the behavior of the defects, decrements, and profiles

of the thermodynamic variables according to eqs. (51), (55), (56), etc.
of Section 4. Generally, computer runs with the programs shown in the
Apprendices were restricted to M e = 0, 2, 4, and 6, and T w/T 0 values of

0.2, 0.6, 1, 1.4, and 1.8 (the "cooled", "adiabatic" and "heated" wake).

The temperature-decrement plots of Figures 7 and 8 indicate the
significant finding that the wake behavior subdivides naturally into
two categories. The first is the hlgh-M , highly cooled type of wake

(Figure 7 ) which is also the one of practical importance in laser

applications. Here the decrement is "normal for Me < 4, but between

Me =4and 5, the decrement switches sign---in some measure due-to the

definition of the decrement. For all other cases, however, the behavior

is typically shown on Figure 8 ; the decrement decreases monotonicallyJ
from the T.E., and is always included within the band defined by each

pair (solid and dashed) of curves. For example, for adiabatic or heated

wakes (T I T 0> 1) and at x'= 1, the decrement always lies between 0.25

and 0.35 regardless of Me

The effect of compressibility and heat transfer on the temperature

profile is shown by the three plots of Figures 9, 10, and 11. The

effect of high Me alone or T.E. cooling alone does not create any
unusual behavior in t as Figures 9 and 10 indicate; the adiabatic hyper-
sonic wake is simply thicker than its low-speed cooled counterpart.

When high M e is combined with cooling, however, Figure 11 shows that the
profile has large off-axis peaks in the temperature, inherited from the
non-monotonic initial temperature distribution at the T.E. (see dashed

curves in Figure 3 and also in the upper portion of Figure 11).

Tne density and total temperature defects are shown on Figures 12

and 13. Note that for M e = 5 and Tw/To = 0.2, the density defect increases

quickly from 0.16 to 0.52 a short distance (x' 0.05) downstream 3f the

T.E. and thereafter dacreases monotonically.

18



Figures 14 and 15 illustrate the differences among velocity,

temperature, and density in the speed with which each tends to achieve

the asymptotic state. The high-supersonic, cooled-wake environment has
been selected for these examples. Figure 14 plots the three defects

together with, their asymptotes (i.e. eqs. (48) and (53)), since the

latter are sometimes used as approximations to the actual defects. We
see that by x' = 0 the actual velocity defects are within 15 percent

of their asymptotic approximations, but that the density defect is closer

to one-half of what its asymptotic formula predicts. Similarly, for

x,= 0.1 rigure 15 shows that the density wake is considerably thicker

than the velocity wake, with the temperature wake falling between the

two. Note that these differences would be ever more prominent if the

Prandtl number had not been taken as unity.

Finally, Figure 16 shows the physical "velocity half-thickness" b*

for two different Mach numbers and temperature ratios. The b* is defined

as the distance from the wake plane of symmnetry and the point whre id is

0.01, and was computed using a transformation inverse to that of eq. (16).

We see that (a) the wall temperature does not much affect the low-speed wake

thickness, but it does so for Me = 6, (b) the high-speed wake is thicker
by a factor of 2 to 4 than the low-speed one depending on Tw/To (this is

really the effect of the initial Si/6) and (c) the wake grows by only a
Z ~small amount (about a factor of 2 at most) before x' becomes unity.

The above results illustrate the findings of Section 5 that the present

theory achieves two major goals: an uneventful transition from the
discontinuous T.E. profile, and agreement with the Classical asymptotic

behavior at large x'. Regarding the latter, the early papers (Ref. 7)
indicate that the asymptotic solution is reached within about "three

plate lengths" (i.e. x* = 3t) of the hypothetical flat plate of length Z

generating the wake. We can check to see if the present theory agrees by

connecting our coordinate x' with the equivalent norm~alized distance x*/Z-.
Using the customary incompressible formula for the T.E. 8 in terms of t:

X
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we get, from eq. (36): V_ X0
f ___ X x -- O.S4 -

X = •-•4eRg -4 t Peeo (&,/}#

At x*/e = 3 or x' = 1.68 our present theory (eq, (47) or Figure 4 ) gives

w = 0.206, while the asymptotic value fr',n eq. (48) is 0.218 for a

difference of only about 5 percent; thus the three-plate-length estimate

still holds. On the other hand, the corresponding comparison fo ;he

density defect is 0.345 and 0.589 for the actual and asymptotic values

respectively, for a difference of 70 percent (assuming M e = 5 and Tw/To = 0.2).

7. Comoutations and Graphic Results for the Asymmetric Wake

As already noted, the computations for asymmetry were limited to the

extreme case of P = 0. To keep this report to a reasonable size, numerical

computations with eqs. (71), (72), etc. were done-for three cases: Me = 6,
Tw = O.2T0 ; Me = 0, Tw = 0.2To; and Me - 6, Tw = To. Coý,.parison of the

former two a lows an appreciation of the compressibility effect, while the

heat-transfir effect can be illustrated to some extent by comparing the

first with the third cases. Of course, the results for the velocity are

valid for all M and T /T because of the transformed coordinates.
e wo0

A general illustration of the course of events beyond the trailing

edge is given by Figures 14 through 21 which include the initial variations
(at the T.E.) of the variable plotted. Note that these initial variations

are uniformly zero for all y' > 0, since P = 0 implies that 61 = 0 if

02 is finite; that is, there is no boundary layer, initially, on the

positive half-plane. Also note that in these Figures, the plotted quantities

are the variations i - u/ue etc. rather than the profiles as defined by

eq. (75) etc.

Just as in the symmetric wake, the discontinuity vanishes as soon as

the fluid leaves the T.E., the "rounded top" of each variation marking the
"wake center". The T.E. asymmetry persists for some distance, symmetr~zation

occurring gradually toward the larger x'. The wake center deflects into

the y' < 0 half plane; for the velocity, which always starts out with the

center at y' = 0 the deflection is gradual. For the temperature, the Me = 6,
Tw = 0.2To case shown in Figure 20, the center initially lies off the
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y' 0 plane, i.e. at infinite x'* the wake symmetrizes but remains displaced

off the y' - 0 plane. For cases of practical interest, as Figure 20 shows,

the deflection does not amount to more than one or two . However, the
fact that the wake center for the velocity, called y'c , does not coincide

with that for the temperature or density (y' c9yAcrsetvl)i
major finding of this work. Figure 22, on which the deflections of y' c

y A c , and yý are drawn, shows that the centers for these three properties
remain deflected along different paths as x' becomes infinite. This

difference in the wake center of velocity, temperature, and density lies

in the fact that whereas the velocity center is always at y' z 0 when

x'-0, the extremum in the temperature distribution at the T.E. may be
off the y' = 0 plane (the case of the cooled hypersonic wake discussed

here is a typical example).

The above remarks refer to the compressible-transformed deflection;

in the physical plane, the wake centers (for the velocity only) are shown

on Figures 23, 24, and 25. It was found that in the physical plane, the

deflection decreases at large x' generally, i.e. the wake centers tend to

return to y' = 0. Since the deflection amounts to only a small physical

distance anyway, it probably deserves little additional discussion. Finally,
in the non-dimensional coordinate F defined by eq. (50), the wake centers

for all variables seem to always return to y' = 0.

Figures 26, 27, and 28 show the net result of the asymmetry on the

maxima or minima of the flow variables at the wake center. This is ex-

pressed in terms of the defects such as of eq. (44), (51), etc. except

that the center property, being off-axis, is designated by the subscript
"C". Dashed lines on these Figures represent the symmnetric-wake defects
from eq. (44), (51), etc. for comparison. It is seen that even the largest

asymmetry does not produce changes in the defects of any more than a few

percent, and these changes naturally vanish at large x'.

Figure 29 shows examples of the developing profile, while Figure 30

shows how fast the asymmetric profiles approach the asymptotic limit

expressed by eq. (49). The example chosen is M e =6, T W 0.2T 0 and
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x I 1, that is near the region where the symmetric wake itself (P • 1)
was beginning to coincide with the asymptotic profile. The ordinate

is normalized with the center deficit ue - uc or Tc - Tel while the

abscissa F - Fc where

is shifted to put the top of the profile at zero. It is seen that at

x' - 1, only slight evidence of the asymmetry still remains, and that

all profiles regardless of P value are nearly the same as the asymptotic

one.

Finally, Figures 23, 24, and 25 show the geographical features of the

Me = 6, Tw = 0.2T0 wake in the physical plane, consisting of the wake edges

b*/R in the two half planes and the physical wake center y*. The edges

and the center were again computed by the transformatlon inverse to (16), and

are limited to the velocity field; that is the edge is the position

where the velocity profile is 0.01, while the center is the maximum of

the velocity profile (one could equally well draw analogous curves for

the temperature and the density). The following are obvious from these S
Fiqures: (a) the initially zero-thickness portion of the wake grows
rapidly, while the initially finite half (the one with initial momentum

thickness e2 ) grows slowly and on occasion decreases slightly In thick-

ness at the beginning, (b) the wake center originally deflects dcwnwards

and then returns toward the plane y' = 0, (c) the asymmetry decreases

downstream since the two edges begin becoming equidistant and (d) the

wake thickness in terms of 0 is independent of P at.large x'.

8. Discussion and Comparison With Experiments

The present work was motivated largely by the desire to provide

closed-form solutions for the symmetric wake for application to gas-dynamic
lasers. In an earlier paper (Reference 8 ) the present author formulated
a theoretical compendium of wake predictions for compressible two-dimensional
wakes at arbritrary Me and Tw/To. This earlier theory was based on an

integral approximation to the total drag of and heat loss from the structure
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separating the two streams, as well as the asymptotic symmnetric wake
formulas contained herein (eq. (48), (49), etc.) Experiments by Peterson
(Reference 9 ) and this author (Reference 10) produced data agreeing
with the turbulent-wake prediction of this earlier theory but disagreeing

with its laminar counterpart. This could be explained by the fact the
turbulent wake mixes so quickly that its non-equilibrium (adjustment)

zone behind the T.E. never plays a role; for the laminar wake, however,
the non-equilibrium zone (found herein to extend as far as x' - 1 to

x= 3) was unaccounted in the early theory, thus producing disagreement

with the data. It therefore became important to have on hand a wake
theory treating equally the asymptotic, far region as well as the non-
equilibrium ("near" or "adjustment") region close to the T.E.

The same data of Reference 10 disagreeing with the earlier theory

of Reference 8 are plotted on Figure 5 . Two data points from Sato

and Kuriki (Reference 11) are also included. The agreement is very good
wit~hin the data scatter. No other quantitative data could be found for

comparison, but neither could intimations be found in the literature

contradicting the present findings. In fact, Batt and Kubota (Reference
12) present an experiment frequently intimating the validity of the present

approach; for example, they find that the proper scaling length is the

total T.E. momentum thickness.

Both Figures 4 and 5 show how, in the limit M = 0, T = T , thee w 0
present theory agrees with the findings of Toilmien and Goldstein for the

entire x' range. This agreement, as well as the agreement with the data,

refers to the symmetric wake. No previous theoretical or experimental
threatment of the asynmmetric wake could be found.

Note should be made of the differences between the adjustment of the

density field, and the adjustment of the other flow variables. The density
i~s generally very slow to adjust to the asymptotic lim~it. The reader can
expand on this statement by nmaking numerical computations with the programs

listed in the Appendix.
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The good analytic behavior of the solutions presented here, and the
agreement with the data appear, at first glance, to be disproportionate

to the severity of the basic assumptions (10) and (11). Recall, however,
that the solutions are forced to obey the correct boundary (initial)
conditions at the T.E., while the method supplied by Gold guarantees the
proper asymptotic behavior as well. With the solutions thus "tied
down to the proper limits at the two ends", it is not surprising that

the intermediate regions give the proper results.

9. Conclusions

1. Closed-form, analytic solutions have been found for steady,

laminar two-dimensional wakes applicable for any value of the

edge Mach number Me, trailing-edge, wall-to-stagnation temperature

ratio T /T0 and for any ratio P of the momentum thickness of

the two merging boundary layers. The streamwise development of

the wake is controlled by the total momentum thickness and the

unit Reynolds number contained in the longitudinal variable x'
2. Beyond a certain distance x' ranging from 1 to 3 the wake conforms

to the classic similarity form regardless of Me , T w/To0 or the

initial asymmetry expressed by P. This distance marking the

onset of dynamic "equilibrium" is almost exactly equal to that
found in early studies with incompressible flows. Only the

dens-ity lags behind the other flow variables in reaching equili-
brium within this distance.

3. Many, if not most, current practical applications involve wakes
within the "non-equilibrium" distance between the trailing edge
and x' = I to 3. The classic asymptotic formulas are inapplicable
in this region. For wakes such as encountered in laser cavities

(large Me , T w < < T 0) the present theory reveals many peculiarities

of behavior, such as non-monotonic development, off-axils maxima
etc. even for the initially symmetric wake.
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4. Even for the largest initial asymmetry, the flow defects (e.9.
minilaum velocity) are almost equalI to those of the symmetric

wake. In the non-equilibri4*4egion, however, the initial
asymmetry causes the ..wa" to deflect towards the side of the

initially thicker boundary layer, and the extrema in the velocity

profile do not coincide with the extrema for the density or
* temperature.

I
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APPENDIX

COMPUTER PROGRAMS

All programs contained in this Appendix use the BASIC language.

The output symbols for each program~, as they appear on the printout,
are explained in terms of the symbols listed in the beginning of this
report.

t
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"WAKEFLOW2" PROGRAM

1. Purpose: To compute the defects for symmetric wakes as a function of

x., with Me and Tw/To as parameters.

2. Application Example

2.1 If the defects at'a single x', Me, Tw/To are desired:

Compute.the defects at Me = 3, Tw/To0  1.5, x= 0.6.

Enter:

30 LET T*= 1.5

40 LET M 3

180 LET x 0.6

410

460

470

2.? If the defects at a single Me, Tw/T0 buIt a series of x0 are desired.

Compute the defects for the above example but. for x" intervals

of 0.05 from 0 to 0.8.

Enter:

30 LET T = 1.5

40 LET M = 3

180 FOR x = 0 TO 0.8 STEP O.,)5

460

470

2.3 If one needs the defects for a series of x" at each of a series

of Me, and additionally for a series of Tw/To:
Compute the defects for Me = 0, 1, 2. . . S, and T w/To 0.5,

1, 1.5, each for x' frrom 0 to 2 in steps of 0.2.

Enter:

30 FOR T = 0.5 TO 1.5 STEP 0.5
40 FOR M = TO 5 STEP l

"180 FOR x = 0 TO 2 STEP 0.1
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3. Explanation of Output Symbols

Printout Symbol Explanation

B B

C C

TO/TE-l t
TO-TE/TW-TE t.

1-RO/RE r
RE-RO/RE-RW r

W w
M(O) M(O)

TOO-TOE/TOE H
TOO-TOE/TW-TOE

A
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"NASALO" LISTING

140 REM WAKFi. 02
20 Dim XUIO) ,XIuqo).Y(40ytW(40).,X2(40),H(q0l),F<40) 24f00

27 DT.M N(ln(6),4*2('1o) , HI( q
30 FOR T- .2.TO i, *oSTEP's

40 F OR: M- 1-0 5o 13TEP:1
50 PRIN'T 'SYMMETRIC WAKE DEFECTS",
69-PRIN r"'FOR TW/T 0:5'' j
00 PO~NT "-AND MACHI- N0'~~MM

*1'.00 LEI F' *2w(MA2)*IT±1)+T7i.
110 LEFT 0 -,2*( MA2)
120..PFINT P 'Ti- CONSTANT IB" ';
130 F RINi 'TI-IE CONSTrANT C-";(''

* 150 FRItNT
160 PiRtiT ''X'''''1/ TE--- L ','T 0-TEl IW- I F' ''1-Rd ,RE'' C'RE-R0/f:E--RW'
l6b PRINT 7A5(R),-'W'',"'MCD)'', TOC-rOF-/TOim' 'T00-TOE/TW-TOE-

1. 7-30 P.:RINT TO3STP.

I9 AJLT P 1. 32:7BY1I
2 0 0'LET Ain :2 548S29592-1

10 L.ITr, 1 ~*. ;;13'r49673608 IO001.

220 LET 4:hI *4214137'f# t
2.30 LE T A/h: -19153152;0a271;
2"10 LET A5::-1.*0614 05129*
20 LET XV ~:2*30 P(X )

U'6 LET 0wljf1( +F'XX1
* '~~70 LfT:; Y(A1*0+A2*00<2) 43* ( 0A3 ) 4A's*( f)iA4 45*( i)-) ) zEXP -(Xl Ap))

00 LET W:::(FXP(4*X) )wY
290 LET X2h2*X1
"30 0 L ET F: wli/ (I +.::x2 )
310 LET 7t (Al zF+A2* CF"?) A3*CF"3 ) +A'4* CF'4) +A5* ( F"5) ) *FXF' K-"X2A2 )
320 LEFT H::F*W+CmEXP C 6wX )w*7
330 LET F HI " 1/ '2 i:
310 LET IRtH/ CH+ 1.

NO~f L.ET M:l:i* Cl-N) /SQR J*+4J

380 LET H3::d4/ 0TiV
390 PRINT X, HINl RR
I 030 PPIN 1 TrAiS , *MWH2,1 i? ý
11 0 NEXT X
4{20 PRINT
430 P~RIN~T
4160 NEXT il

'970 E:x tv
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"WAKEFL02" OUI PUT

: YMM Ii.I•'rC WAK',E"i DEF'ECTS
FO(itR 'T' W,/T" O.. .5

TN MACH NO Sf 2 cTHEI!! CIONS'TANd'T' B=I.. .7'
'THE~~i CO;NST'IANT C=-......

1f T :: .'"'T.1, '0-"TE/TW, INR I L '1 O/F:I" RE-RO/RE-RW
w MC (0) TOO-To0I:/T"IE TOO-TOE/TN.roE

o .... 1 1 '-'.1: I:.1 11]. 1
i0 '-. i5t 1

'542. * 09679867988, 0382557 -- 794302,
-If58226 1.03459 -. 260224 .520449""0883864 -'.883965 .0812087 --. 730879
26'.732 1,21785 .215979 . ,'31957

6 . 0804491 -".804491 .074459 .670,I31
.313716 1 .2048 "-190422 ý0(347

* 8) * (0740563 , .71563 .0689501 -'4 4241551
* 79967 1* 38953 * 172881 .415762

1 .0688763 -. 688763 *064438 -. 579943
i , .:.,• 0 .I . 4T U }'.4. .-.. .,i:;5 Oi6* t,l1J * :I'J

1 ..2 0 064592.9 - .64E929 .0606738 ' . 54606'a
* 23'64qif 8 1. 480 05 -- , 1 f49If If .298,3f7

14 •.0609823 .,609823 .0574772 .. ""17295
,22:L232 1.51211 -. 0141019 .2820371.6 .0578878 .. .. 78878 .0547201 -".4q92481
.2.08658 1.53877 .. 133963 .267926

1.8 .0551987 .,551988 .0523112 "-,470(301
.198037 1 .561411 .1 ,127937 .255873
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"WAKEFL03" PROGRAM

1. Purpose: To compute the lateral profiles of symmetric wakes at a

fixed x', Me Tw/T 0 , as a function of y'.

2. Application Example

Compute the profiles for x' = 0.25, Me = I and T w/To 1, for y'

intervals of 0.15 from 0 to 3.

Enter:

30 LET M = 1
40 LET T = 1

"4 50 LET x = 0.25

360 FOR V = 0 TO 3 STEP 0.15

3.' Explanation of Output Symbols

Printout Symbol Explanation

Y y-
rY/2SQRX' F

UTILDA

TTILDA T

RHOT I LDA

M M
TOTILDA H
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"HWAKEFLO3H LISTING

15 DIM MI.(20) ,H2(20) pHa(20) ,H%12O)
20 DIM V(2OY~i(20)PY2(20),R(2()),Y3(20) ,Y't(2(3) ,R1(20),LJ(2(3)
21 DIM R ( 20)

3 0 iLET M-:1.

5 0 LET5 X-. 5
60 PR:INT ''SYMMETR:IC WAKE: PROFILES'
70 FRINT "........--- . . . ..-- --

8 0 F:RINTJ
90 PRINT ''FOR X / :;;X

1.00 aPRI*NT "'AND M-''; M
110 PRINT "AN[) 1W/TO:;"; 1
120 PRINT'
130 LET F::: * 2(MAR)*E( Tf1) +T-:1.
140 LE:T C=:-:.-,2w (MAR2

150 ( PR:INT "'COMPUTED) CONSTANT '':
160 PR:INT "COMPUJTED: CONSTANT C:::" ;(
170 LET P:: .27591
180 LET A1=,254829592*
190 LET A2= *284'1967360000001*
200 LET A) 1 '121'113741*1
210 LET Ali-1.1531 520274
220 LET A5=1,*061405629;0
230 LET XL 'ESOR(X)
210 LET ) L ( 4P*X1 )
250 LET v:::(A1*D+A2w (D"2 )+A3 ( D"3) +Alw(D Al )+ASw (DA5) ) EXF'(-( X1A2) )
260 LET W:::YWEXP (IWfX)
270 PRINT "COMPUTED W="; N
280 LET X2:=2*X1
290 LET F:::/(14.P*X2)
300 LET Z= (A1*F+A2m (F A2 )+A3w( FA ) +A6 ( FA4)+AS ( FA5) )*EXP ( -(X2A2) )
3:10 LET H:::tW)W+C*EXP (16*X ) E
320 PRINT ''COMPUTED H=T (()/IF: - 1=01:';
225 PRI:NT ''COMPUTED DEFECT H'=(Tr(U0) -TE/TW-*TE )-'';H/(BE+C )
330 PRINT
31l0 F'RINT ''Y/''" , ''Y/2SORX ' '', 'tTIL.DA'' ''TILDA '', 'RHOTILDA''
345 PRINT T AF:(0)JM" ,"TTIL.DA"'
350 P FRINT
360 FOR V:: TO 3 STEP .15
370 LET YI::V/Xl+X~l
380 LET Y7::1 / ( +F'Y1 )
390 LET ~R-( A1Y2+A2w (Y2A 2 ) +A3 (Y2A3)+AqE(Y2A4) +A5 ( Y2A5) ) EXP( - ( YjA)))
'100 LET Y3::V/X 1-Xl.
'105 aIF Y3K 0 :;T(: '42'
'110 LET Ydf:::/ ( 1+FY3)
'Ln LET li(NYAx YA2Ax qA3+4 YA Axy45xEP-YA2)
421 COTO 430
422 LET Y3=X1-V/X1L
'424 L.ET Y4:::1,'(1+PxYS )
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"WAKEFLO3" LISTING (CONT'D)

429 COTO 440
1430 LET U:=, 5* (R*EXP (4*X+Z*V) +( I+Rl )EXP(4*X--2*V))/'W
140 LET Y5::-:2*Xl+V/X1
150 LET Y6=1/(I+FPNKY5)
460 LE"T R2:A*6+A*Y^)A*Y^)A4(6q+5KYA))EP-YA)
470 LET Y7--:.:X1--V/Xl

S 400 IF Y7(0: C;OTO 520
-q90 LET Y8:n~1/(i.+F'*Y7)
500 LET R3=(Al*YB+A2*(YB^2)+eA3*(yeA3)+A4 Y8IA,4)+-A5*(Y8A5)) EXF'((Y7A2))
51l0 COTO 550
'.;2 0 LET Y7=V/Xl1-Xi
530 LE*T Y8::.t/(14+F'Y7)
540 LET R3=2-(A1 8S+A2*(YBA2)+A3EK( 8q+4~YA)+A5K(YBA5) )*EXP(-(Y7A)
5 '50 LET Y9--:ZXI-Y/Xl
560 IF Y9<::O COTO 600
570 LET Flll/(l+F:*Y9)
590 LET RA=A*~..2 A*FA3A4KF^)AK(15))*EXP(-(Y9A2))
590 COTO 6:30
600 L ET Y9=V/Xi-2*Xi
610 LET F71.'[:t(I +F'w Y 9
620 LE:.T R,1--2AV 14 , )+A4K(F 1

630 L ET Tll E, E I -* -* ))R .,X 4K+ )V R
633 LE:T T2't-. 5*(C* EXP~l6EX--)V) *Ri+EXFP(I 6zX+4IKV) R2))
637 L ErT T3::::T1. +.T2
64q0 LET T+:::T3/H
6 4'5 t.ir"r R5= ( Tq* (FH+-:1 ( T4*H+:1)
616 i...ETT M .= M (1. -U W>/S 0R(1+T I H
6,q7 LET H 2z::(( H+ 1.*1. +.2E(MiJ.A 2) (+ 2E(M 2) )-1
6418 L.ET H 3::..(I + T4EfH)J. +,2E(MAI )/(I +,2EM 2))1

6_ ET 1+44:=V3/H2
6,50 PRINT VV/X:L ,I.J, T4,IRr
(f"., PRINT TAE:((8) ,MltHI
660 NEXT V
700 END
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"WAKEFL03" OUTPUT

SYMME TRIC WAKE PROFILES

FOR X'= .25
AND M:= 1
AND TW/TO I

COMPUTED CONSTANT B= , 4
COMPUTED CONSTANT C=-.2
COMPUTED W= *427584
COMPUTED H=T((1)/TE - 1 *,119953
COMPUTED DEFECT H'.-= (T (()-TE/TN-TE) = *599765

Y." Y'/2SQRX' UTILDA TTILDA RHOTILDA
M TOTILDA

o 0 1 1 1
0540894 1

.1,15 .,15 .985738 .987599 .988913
.54702 1,12106

.3 .3 .944288 .951407 .956384
.564875 1.7231

.45 .45 .879449 *894323 .904561
.592966 11.5166

.6 .6 .796859 4820713 *836781
.629039 --1,70369

.75 .75 o703141 .73582 ,757247
.670389 -o675035

.9 .9 *604977 .645114 ,670604
4714203 -o371414

1.05 1.05 .508323 ,553693 .58149
.757886 -. 227826

1.2 1.2 0417857 .465832 .4941.
.799303 -1145981

1,35 1.35 .336733 .384717 ,411859
.836925 -,0949776

1.5 1i5 .266615 .312385 .337221
.869852 -,0618271

1,65 1 •65 .207897 *249804 .271629
.897756 -,03993

1B. 1. 8 o160037 .197067 .215609
o920752 -. 0254572

1.95 1.95 .121906 .153633 .168949
.93926 -. 0159722

2,1 2.1 .0920926 .118563 .130922
.953864 --9,84869E-03

2,25 2.25 .0691332 .0907185 .100507
.965202 --5.96667E-03

2.4 2.4 .0516595 .0689246 .0765;593
,973894 -3.55195E-03

2.55 2.55 .0384782 .0520665 .05795
.98049 -2,08039E.03

S. 2, 7 0285984 0:391517 0436431
,98546 -1,20079E-03

2.85 2,85 .0212262 .0293344 .032738
.989185 -6,84796E.04
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"WAKEFLO4" PROGRAM

1. Purpose: To compute the physical velocity half-thickness (defined at
0 - 0.01) for a synmetric wake, given Me, Tw/To, x', and
y*(U a 0.01). The latter is found by first using the
WAKEFL03 program.

2. Application Example

Compute the half thickness for Me 5, Tw/T° 1, x 0.1; for this
case, WAKEFL03 gives y'(i 0.01) = 2.7.
Enter:

30 LET M = 5

40 LET T = l
50 LET X = 0.l

360 LET V = 2.7

6
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"WAKEFLO4" LISTING

10 REM WAKEFLO4
20 DIM V(40) ,Yt(40) ,Y2(40t),R(40) ,Y3(40) ,Y4(40) ,RZ(40) ,U(40)
21 DIM RSQ'10 ) V1(40) ,R6(40) ,V2(40)
30 LET M=5~
"{ 0 LET T=:::
50 LET X=. 1
60 PRINT '"PHYS:ICAL. VELOCITY HALF-THICKNESS COMPUTATION (ULTILDA=0#*01 )1
:70 PRINT "FOR SYMMETRIC WAKES"'

80 PRINT
90 PRI.''"FOR X' " ;X
100 PRINT "AND) M'=" M

p ~1:10 PRINT "AND TW/TU9:" ;IT
120 PRINT
130 LET B-~,2R(MA2)x(Tfi)+T-1
140 LET Cr.-,2*(MA2)
170 LET i::=:32759t
180 LET Alr-,254829592*
190 LET A2=t*-284496736(3000001*
200 LET A3=l,421413741*:
210 LET Air.-1 .453152027*
220 LET AS5:1 *061405429*
230 LET X1=2E80R(X)
240 LET D:-1/ (1+P*X1I)
250 LET Y:=(A1WD+A2z(DA2 )4A3I(DA3)+A4I(DA4)+A5R(DA 5) )*EXP (-(X1A2))
260 LET W :--YwEXP'(4iX)
280 LE:T X2:"2wX1
290 LET F=1/(1+PRX2)
300 LET 7 =(AiEF+tA 2 z(FA 2 )+AIR(FA3)+Aim(FA4)+A t iz(FAS)ErXP(XA)*
310 LET H = F:*W + CZEX P( 16*X )WZ
360 LET V=2.7
650 FOR NI" TO 40
660 L ET VI( I ):"I V /,If0
665 LET V1=V1 (I)
1370 LET YI::V1/X1+X1
1380 LET Y2:=i/( j+PNYJ.)
1390 LET R:::(A1WY2+A2*(Y2A2)+A3E(Y2 A3)+A4w(Y2A4)+A5w(Y2 AS))EEXP (-(Y1A2))
1400 LET Y3=VJ/X1"'X1
1405 IF Y3<(0 COTO 1422
1410 LE:T Y4::4/(l+F*Y3)
1420 LET R1:~1-(A1*Y4+A2E( Y4A2)+A3E(Y4A3)+A4E(Y4A4)+A5E(Y4A5) )ZEXP(-(Y3A2))
1421 COTO 1430
1422 LET Y3:::X1.V1/Xi
1424 LET yiu::/(j+PXy3)
1426 LET R1l:(A1*Y4+A2m(Y4A2)+A3x( Y4A3).,A4x(Y4A4)+A5E(y4A5>)wEXP(-(Y3A2))
1428 LET U= .5 ( R*EXP ( 4X+2*V ) +RlwEXP( 4wX-ZV1) )1W
1142.9 COTO 1440
1430 LET U:=,5W(R*EXP(4*X+2WV1)+(1+R1)*EXP(4wX-2wV1) )/W
1440 LE:T Y5=2EXi+V1/X1
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" WAKEFLO4"' LISTING (CONT'D)

1460 LET R2=A1EY6+A2*(Y6A2)tA3*(y6A3)+A4E(y6A4)+AS*(Y6A5) )*EXPt-(Y5A2))
1470 LET Y7=:X1-V1/Xl
1480 IF YZKO 0010 1520
1490 LET YB=1/(1+PwY7)
1500 LET R3(IY+2(B2+A0YA)A* BJ +A*yA)zEXP(-(Y7A2))
1510 COTO) 1550
1520 LET Y7=V1/X1-X:I.
:1530 LET YB=l/(i+F:.Y7)
1540 LET RW3'2-CAiwYB+A2xw YE 2 ) +A3w ( YEV3 ) tAiw ( A4) +ASE ( 9A;) )wEXP(C- (Y7 A2))

: 1550 LET Y9=2RX1-V1/X1
1560 IF" Yi9<0 0010 1600
1570 LET F1::l/( 1+FEY9)
1 :5B0 LET RidhAxAwF1+A2m(FJA 2)+A3w(F'1A3)+Aiw(E1JAd)+A5w(F1A5))xEXP(-(Y9A2))
1590 COTO 1630
1600 LET Y9r:V1/X1-2WX1
16 tO LET Fl il/c1+PxY9)

1620 LET R'h'> CA1EFi+A2Z( FA2?)+A3x (E1A3 )+A4x( F'1A4)+A~x(IX:AS) ) zEXPC- (Y9A2)
1630 LET T1 SE (FBz(EXP (4w.-2EVi ) R3+EXF' C 4X+2EV ) rR>))
1633 LET 1> .5w (0*(EXP C 6EX-4EV1 )wN'fEXP( 16zX+4zV1 >wR2))
1 637 LET T3-T 1+12
1640 LET TSW 13/H
16S LET R5: C 4w (H.1))! CTIEH4 1)
1650 LET R6-'1+T'3
1660 LET V?:::V2+R6wV/40
:1.670 NEXT I
1800 PRINT '"TRANSFORME:D HALF T HI:CKNESS C YTILDA/CAPTHETAW) t

1810 PRINT ''PHYSICAL. HAL.F THICKNESS C Y/CAPTHETA )''; v2
2000 END
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"WAKEL04"OUTPUT

I::HYSI:CAl VEL.OC:ITY HALF*-THICKNESS COMPUTATION (IJTILDA=04~01)
FOJR SYMME~rTIC. WANE'S

FOR X::. I1
AN[) M=~ 5
AND) TW/ro:::: 'i

TRANSFORMED HALF THICKNESS (YT'ILDA/C.APTHETA ) 2 .7
PHYSICAL HALF THICKNESS (Y/CAF'THETA ):- 6,*29334
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"WAKEFLO6" PROGRAM

1. Puvos•e: To compute the "profiles" for the completely asymmetric

(P - 0) wake for a given x', Me, and Tw/To, for intervals

of y' over a specified range of y".

2. Application Example

Compute the profiles for P a 0 and x'- 0.01, Me a I and Tw/To a 1.01

In steps of y' - 0.3 over the range from y' - -3 to +3.

Enter:

20 LET X a 0.01

22 LET M = I

24 LET T a 1.01

160 FOR Y =-3 to 3 STEP 0.3

3. Explanation of Output Symbols

Printout Symbol Explination

Y-/2SQR(X-) F

1 - U/UE 1 - u/ue

T/TE - 1 T/Te - 1

R/RE- 1 1/fe- 1
M M

TO/TOE - 1 To/Toe - 1
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"WAKEFLO6" LISTING

1 0 REM W A KEFL..(J6

16 DIM 21(40) ,D(40),Y2(40),Y3(40) ,H(40),R(40)tM(i0),Tl1(4O)
20 L ET X-s.0 1
22 L ET M::;
24 L.ET T;-I .01
26 LET p I%=: *2 WM A 2)T +1++T -1
28 L E.T C -::.,#2EK(MA2)l
3:0 L ET FP':- . 327591
-10 L E:T Al::::, 254829592*
50 L E.T A 2:=:--, 26 q4 96 7 36 00 0 00 014*
60 LET A'3 -1i,4q214 137i41*#
70 LET A'?:- -I.#4,5315 2 02 7*
80 LET AS::::1,,061405429*
90 PRINT "COMPLETELY ASYMMETRIC (P=0) WAKE PROFILES"
:10 0 PRINT "" - ----- --- - . --- ' - - - -

1 10 P RI NT
:120 PRINT "FOR X-*::::"' ;X
122 PRINT "AND MACH NO, ::.'*#
1.2.4 PRINT " Tw/To0";T
126 PRINT
130 PRINT "Y't " "Y '/2SGR (X t 1, "1 -U/UE" t "T/T- 1" t "R/RE-1"
110 PRINT TABL(8) t "M" ,"TO/TOE-1"
150 PRINT
160 FOR Yz:-"3 TO 39 STEP #3
170 LET tr-SGR(X)+Y/(2160.R(X))
17.9 IF ZK,"O COTO 192
180 LET B=1/(1+-PwZ)
:190 LET Y1=(AIwB+A2*(6A2)+At3w(BA3)+A4E*(BA4)+.A5w(E:"5) )rEXP(-(ZA2))
191 COTO 200
192 LET Z:=-Y/(2XKSOR(X) )-SOR(X)
196 LET B=1/(1[+P*Z)
196 LET Y1=2-(AIwB+A2z(B2)+A3z(8A 3)+~(A)AzB )EEXP( (Z2)) 6
200 LET Uj=,5zEXP(X+-Y)xY1
210 LET Z1:=2ESGR(X)+-Y/(2W7)SQR(X))
220 IF Z1<0" C0T0 260
£3A0 LET D=1/(1+PE',Z1)
240 LET Y2=(AlwD+A2)K(OA2)+A3IK(D A3)+AiE*(D A4) +ASm(DAS) )EKEXP(-(Z1A2)) *
'250 C0T0 290
260 LET Z1=-Y/(2ESQR(X))-..2wSOR(X)
270 LET D=1/(i+PE*Z1)
260 LET Y2=2-(AIwD+A2*K(DA2,)+A3w(DA3)+AiE(D A4)+ASz(DA5) )EEXP( -(ZIA 2)
290 LET H=.SZCEEXP(qX4EX+2Y)wY2+E:1EUJ
300 LET Y3=Y/(2zSO"R(X))
310 LET Z=--H/ (H+1)
320 LET M1:.--(1--U)*MESflR(1-4R)
3:30 LET Tl=((04+1 )Xz(14+,2(M1A2'))/(.14.2*(MA2)))--1
3!.0 PRINT YY3,U,H,R
160 PRUTr TA:(S) ,M1,T1L
:180 NEXT Y
1000 END
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"WAKEFL07" PROGRAM

1. Purpose: To compute completely asymmetric (P = 0) wake profiles of

velocity, density, etc. normalized so that the maximum value

of each profile is 1.0. This is done for a fixed x', Me
End TW/To. The program requires inputs from the WAKEFL06

program in the form of thie extreme (center) values of velocity,

temperature and density.

2. Application Example

Compute the normalized profiles for the P = 0 wake when x' = 0.3, Me =6,

Tw/To = 0.2 for -3 < y" < 3 in steps of 0.05. For this case, the
WAKEFL06 program gives the following center values:

(1 - u_) = 0.3705
Ue

(T - l) = 1.426
Te

(P _ 1) = -0.5879
Pe

Enter:

20 LET X = 0.3

22 LET M = 6

24 LET T = 0.2

82 LET U = 0.3705

84 LET T = 1.426

86 LET R = -0.5879

160 FOR Y = -3 TO 3 STEP 0.06
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3. Explana-tion of Output Symbols

Y-/2SQR(x-) F
I l-U/UE (u e U/U e -uC)
T/TE-l1 (T-T )/(T - Te)
R/RE-l1 (PPe)/(Pc pe)
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!:AKrsPl" LISTING
1 0 R EM WAKh'E FLO07
1, 5 DI.M Y(100) tZ(100) ,E:(100) ,Y1(100) pU(100)
16 DIM Z:1(100O)tD(100) ,Y2(100)tY3(1008tH(100),R(100UtM(1O0),Ti(100)
20 LET X::;:,#3
22 LE T M:-- 6
24q LET T=.
26 L ET B :l. ,2EM A2)ý(T.,. )+ T -1
28B L ET r::: ,2E(MA 2)
30 L E.-T P- .32 7591
40 LEiTF' Al 2 59829`5 92*#
50 LET A2:=*2844967360000001*
60 LET A? 1,421l-13741*
70 LET A,4=-1.#4531520&27*
80 LET A5=I.#0 61 -q05)429#
62 LET U9=.'3705
84q LET T 9:=1.4q2 6
836 L ET R9=:-#5879
90 PRINT "NORMALIZED PROFILES F'OR COMPLETELY ASYMMETRIC (P=O) CASE"
100 PRINT "-------------- -------- - -

.110 PRINT
.120 PRINT "FOR X':n-" ;x
122 PRINT "AND MACH NO.=";tM
124 PRINT "TW/TO:='I T
125 PRINT "CENTER 1--U/UE IS=";U
126 PR I NT "CENTER T/TE-1=";*T9
127 PRINT "CENTER R/RE-i=--"tR9
128 PRINT
129 PRINT
.130 PR INT " Y t "Y "/280R(X ) ' - U( -JU Ez" " (T/TE-1 ) w "R/R E -1)E)
150 PRINT
160 FOR Y=---3 TO) 3 STEP .06
170 LET Z=SOR (X)+4Y/ (2XSGrR (X))
175 IF 1(0:' COTO :192
1.80 LET E:=1/(1+PEZ)
190 LET Y1=(A1*8+:-#A2R(BA2,l)+A3)K(B:A3)+A4I(E:A4)+A5*(8A5) )*EXP (-(ZA 2))
191 COTO 200
192 LET Z=--Y/(2WSQR(X))-SQR(X)
194 LET 8-.,1/(1+PEZ)

196 LT Y±=.~(AEE:.Aw~e.)+A3z(EBA 3)+AqE(E:Af) +AsmEAs)c*p((~)
200 LET 1PSE*EXF:I(X+Y)WY1
210 LET Z1=2ESUlR(X)+Y/(2mSOR(X))
220 IF Z1(0:' COlT) 260
230 LET D~1/(1+.PwZl)
240 LET Y2=(A1*D+A2z(DA2)+A3z(DA3)+A4E(DA4)+A5i(D AS) )*EXP(-(Z1A72))
250 COTO 290
260 LET Zi=-Y/(2E*fL4R(X))-2*SGR(X)
270 LET DzlI/ (1I+PE:'ZZI)
280 LETr Y2=2-(AIwD+#A2R(DA2)+A3*CDA3)+Adfz(D Al)+A5m(DA5)flmEXP(-(Z1A2))
290 LET H---,#5*C*EXP'(4mX-+2*Y)x*Y2+E:IEIJ
300 LET Y3--rY/(2WSORF(X) )
310 LEF"T R:n-,H/ ( H+:L)
320 LET M 1:=(I-U )E*MxSOR (1+R)
330 L ET T1=((H 4- (1 +#A7.*E( MXIA2))/I +,*2(MA2) ))-1
350 PRINT YY3tU/U9,H/T9,R/R9
38t' NEXT Y
390 PRINT
4q0 0 PRINT "nNORMALIZI:ED WITH THE APPROPRIATE CENTER VALUE"
1000 END
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"WAKEFL07" OUTPUT

NORMALIZED PROFILES FOR COMPLETELY ASYMMETRIC ,(P=C) CASE

F CR X-2 ,3
AND MACH NO,= 6
TW/rTO!.. .2
CENTER 1--u/UIE IS= .3705
CENTER T/TE--I= 1.426
CENTER RIRE.-I.=-.579

S~YO Y'/29QR(X' ) (I'-U/UE) • (T/TE~I)* RR-)

3 -2.73861 .J.11215 #327995 .542051-2.94 -2,68384 #192365 .34557 #561508""-2.88 -2,62907 # 2 0 1. 86 .363893 .581108-2482 ."245713 *216714 *382967 .60081-2.76 -2-51952 #229983 •402795 •620567--2,7 •-2#46475 .241032 o423371 #640334"2. 64 -2.40998 .258895 *444695 .6600612.58 -2.35521 # 27461 .466722 .6797..*2..52 -2.300,94 #291.2709 .489456 •6992
• "",#6-ZZI5"66 ,308726 ,512857 ,718508 .:
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